- [检测百科]分享:酸性停堆温度对模拟压水堆一回路环境中304L不锈钢表面氧化膜的影响2025年03月18日 11:28
- 压水堆(PWR)一回路系统构件常采用304L不锈钢。机组运行期间,在高温、高压和强辐射的环境中,不锈钢表面会形成致密的氧化膜,起到抑制和减缓金属腐蚀,以及减少放射性杂质生成的作用,氧化膜的性能将对构件的腐蚀速率、腐蚀产物释放及其源项产生较大影响[1-5]。
- 阅读(2)
- [检测百科]分享:P110油管应力腐蚀开裂失效的原因2025年03月17日 13:40
- 石油天然气资源是我国的主要能源资源之一,支撑着国家的经济发展。由于地层结构等原因,腐蚀是油气田经济和生产发展中面临的重要挑战之一,尤其是近年来顺北油气田已陆续出现多个110钢级油管开裂情况,如何避免同类开裂事故的再次发生,是目前亟需解决的问题。
- 阅读(4)
- [检测百科]分享:含微量水和氧气的CO2输送管道的腐蚀环路模拟试验2025年03月14日 09:57
- 目前的CO2输送管道主要采用碳钢[3-5]。按照管道输送时CO2的相态,可分为气相CO2管道、液相CO2管道和超临界CO2管道,若液相和超临界CO2混合存在,则称为密相CO2管道。通常,干燥纯净的CO2对碳钢没有腐蚀性。
- 阅读(2)
- [检测百科]分享:考虑弯矩影响的含腐蚀缺陷X80管道失效内压的计算方法2025年03月13日 14:56
- 由于管道周围土壤的复杂性和管输石油、天然气等介质的腐蚀性,管道极易形成腐蚀等体积型缺陷,腐蚀缺陷将导致管道壁厚减薄、强度降低、应力集中,从而降低管道的极限承载能力,削弱管道抵抗疲劳载荷的能力,严重时甚至会发生局部穿孔导致的泄漏事故[1],造成经济损失和人员伤亡。长输油气管道路由复杂多变,往往会途经泥石流、洪水和滑坡等地质灾害易发的地区,地层土壤的移动会使管道产生弯曲变形,严重威胁管道的正常运行。准确计算弯矩影响下含腐蚀缺陷管道的极限承载力,对确保管道安全运行具有重要的工程意义。
- 阅读(2)
- [检测百科]分享:耐蚀涂层失效监测方法及失效机制研究进展2025年03月13日 09:55
- 以钢铁为主的金属结构在长期服役过程中会遭受严重的腐蚀,这不仅会导致结构寿命缩短,维修成本增加,甚至还会引发安全事故和环境污染。
- 阅读(2)
- [检测百科]分享:耐高温盐酸酸化缓蚀剂的研制及其缓蚀行为2025年03月13日 09:14
- 伴随着能源消耗的持续上升,油气田的勘探开发正逐渐向深井、超深井(>7 000 m)和极深井(>15 000 m)发展。酸化技术作为重要的增产增注手段仍将被用于深井的开发。在深井的酸化过程中,由于酸量多,且井下高温(通常大于180 ℃)、高压和高酸的恶劣环境,造成井下金属设施和管道严重腐蚀。
- 阅读(2)
- [检测百科]分享:舰载航空发动机用GH2150A压气机叶片的耐蚀性2025年03月12日 13:37
- 在现役海军飞机发动机维修检查时发现压气机叶片存在明显的腐蚀现象,叶片级数越高,表面红锈越明显。压气机叶片不断遭受海洋大气的腐蚀影响,其叶形、表面粗糙度以及叶顶间隙会发生变化,使得压气机各项参数偏离设计值,导致流量减小,效率下降,性能衰退[6-7]。为了验证GH2150A叶片在海洋大气环境中的耐蚀性,以及化学钝化对GH2150A叶片的防护作用,开展了192 h酸性盐雾试验、680 h酸性大气试验以及100 h高温(600 ℃)涂盐热腐蚀试验,以期为该型号叶片在海洋环境中的服役提供理论支撑。
- 阅读(3)
- [检测百科]分享:两种油管钢在模拟油田高温高压O2-CO2地层水环境中的腐蚀行为2025年03月11日 15:08
- 统计发现,近年来天然气中普遍含氧,尤其是应用氮气气举、注气、注水、机械清蜡等作用的井,氧气体积分数超过0.5%。水中的溶解氧将作为阴极去极化剂,影响金属的腐蚀进程,目前溶解氧已诱发多起油套管[1-4]、井口装置[5]、井下工具[6]、管道[7-10]的腐蚀失效,严重威胁油田注入井筒金属材料的服役安全。因此,金属材料在含氧环境中的腐蚀已成为油田面临的普遍问题。
- 阅读(2)
- [检测百科]分享:模拟冷却水中不同抑菌方法对不锈钢微生物腐蚀的抑制作用2025年03月11日 12:58
- 微生物造成的金属材料腐蚀给工业生产带来了巨大的安全隐患和损失[1-2],尤其在各类水环境中。循环冷却水具有适宜微生物生长的温度环境,且含有可促使微生物生长繁殖的有机物,微生物会大量繁殖并在传热面形成生物膜,使管路的传热效率降低,诱导金属腐蚀,严重时会造成管路堵塞、泄漏,从而引发安全事故。
- 阅读(3)
- [检测百科]分享:某油管柱穿孔断裂的原因2025年03月11日 12:42
- 油管是油井中的重要部件,总是在非常复杂的应力和腐蚀条件下服役,油管失效经常发生并造成巨大损失。引起油管断裂的原因是多种多样的[1-6],断裂形式也是各不相同[7-8]。某油管服役于井深8 360 m的垂钻井。该油管于2018年12月试油生产,2020年6月识别出井深2 860.6 m处套管发生泄漏,暂堵酸压后开井生产。
- 阅读(3)
- [检测百科]分享:含H2S天然气管道内腐蚀直接评价方法的改进2025年03月10日 11:24
- 在所有失效的管道中,由内腐蚀引起的失效高达50%[2]。未详细进行内腐蚀检测或未使用正确的内腐蚀评估方法是管道发生内腐蚀失效事故的主要原因[3]。天然气管道内腐蚀直接评价是一种重要的管道内腐蚀评估手段[4]。
- 阅读(2)
- [检测百科]分享:电网设备中不锈钢部件的腐蚀特征2025年03月10日 11:18
- 电网设备金属材料[2-3]有铝合金、铜合金、碳钢、不锈钢等几类。这些材料在具体应用时有不同的要求。另外,同一种合金作为不同电网设备的部件时其性能要求也有所差异。因此,技术人员需要根据金属材料的力学、耐蚀、耐磨等多个性能指标,合理选用,以保证电网的安全经济运行。
- 阅读(4)
- [检测百科]分享:埋地双金属复合管焊缝区域腐蚀风险及阴保效果评价2025年03月10日 10:09
- 油气管道通常埋地敷设,其外腐蚀防护系统广泛采用外防腐蚀层与阴极保护相结合的方式。防腐蚀层作为管道的第一道屏障,物理隔离了管道与土壤,避免其直接接触,但在制造、运输、施工及服役过程中,防腐蚀层难免会产生缺陷,性能也会逐渐下降;而阴极保护则对这些缺陷位置进行了补充保护,确保缺陷处管体裸露部分免受外腐蚀[1-6]。
- 阅读(2)
- [检测百科]分享:热采井中油套管钢的腐蚀行为2025年03月10日 09:44
- 在单一的CO2腐蚀环境中,CO2分压小于0.021 MPa时,钢材不会发生腐蚀,当CO2分压介于0.021~0.21 MPa时,钢材会发生腐蚀,且腐蚀以全面腐蚀为主,当CO2分压大于0.21 MPa时,钢材会发生严重的CO2局部腐蚀[3]。DONG等[4]研究发现低合金钢在CO2环境中的耐蚀性优于碳钢,钢材的耐蚀性取决于表面形成的腐蚀产物膜的性质。LI等[5]研究发现低铬合金钢中的游离铬含量越高,其在CO2环境中的耐蚀性越好。
- 阅读(4)
- [检测百科]分享:Li2CrO4缓蚀剂对镁电池负极耐蚀性及电化学性能的改善2025年03月06日 14:15
- 锂离子电池虽然能缓解能源消耗,但锂电池安全性差、锂矿资源少[2]等缺点注定了其只能成为能源的过渡形式。在金属电池体系中,镁电池无污染、能量高、体积小、质量轻、安全性高、价格低廉[3],是一种极具前景的储能设备。
- 阅读(3)
- [检测百科]分享:氢对600合金在高温高压水中电化学行为的影响2025年03月05日 14:13
- 600合金是一种镍基合金,由于其具有优异的力学性能和耐腐蚀性能,被广泛应用于石油、化工和核电领域。国际早期建造的压水反应堆(PWR)中大量使用了600合金。例如,截至2005年,美国大约50%的PWR仍在使用600合金蒸汽发生管[1]。
- 阅读(2)
- [检测百科]分享:阴极防护下钢筋在模拟混凝土孔隙液中锈蚀的临界氯离子浓度2025年03月03日 13:13
- 对于暴露在海洋等氯离子环境中的混凝土结构,氯离子侵入导致的钢筋腐蚀是结构物耐久性劣化的主要原因。根据经典的Tuutti混凝土劣化模型,钢筋的腐蚀分为两个阶段:一是腐蚀诱导期;二是腐蚀发展期。在腐蚀诱导期,当混凝土中钢筋周围的氯离子浓度达到钢筋脱钝的阈值(即临界氯离子浓度)时就会发生腐蚀。
- 阅读(2)
- [检测百科]分享:E690钢在青岛海域不同区带的初期腐蚀行为2025年03月03日 11:07
- E690钢是我国研发的一种低碳贝氏体高强钢[1],具备高韧性、高强度以及优异焊接性能等特点,被视为目前海洋工程用钢中理想的高强度钢材之一[2-4]。然而,高强钢在恶劣海洋环境中服役时易受高温、盐雾、微生物等多重环境因素腐蚀的影响[5-6],导致服役寿命下降。因此,高强钢结构在海洋环境中的安全性和稳定性一直备受关注[4,7]。
- 阅读(2)
- [检测百科]分享:海洋工程管道腐蚀损伤深度无损评价方法2025年03月03日 10:00
- 管道系统作为人类社会的重要基础设施,与公路、铁路、空运及水运并称为五大运输方法[2],也是海洋资源开发的重要输送系统。由于海洋大气环境[3]、海水介质[4]、高静压低温环境[5]和微生物[6]等,海洋工程管道的腐蚀问题尤为严峻。
- 阅读(6)
- [检测百科]分享:高铁位置对埋地管道干扰影响规律2025年02月28日 14:18
- 随着经济的发展和能源需求的增加,电气化铁路和埋地油气管道建设大幅增加,受空间及环境因素的制约,二者不可避免会形成交叉或平行的情况。当电气化铁路与埋地管道相互并行交叉时,可能通过电磁耦合、电阻耦合、电容耦合等方式对埋地管道产生交流干扰,可能使管道产生交流腐蚀甚至击穿管道防腐蚀层[1-2]。
- 阅读(2)