-
环境可靠性试验-高低温湿热试验
高低温交变湿热试验箱是航空、汽车、家电、科研等领域必备的测试设备,用于测试和确定电工、电子及其他产品及材料进行高温、低温、交变湿热度或恒定试验的温度环境变化后的参数及性能。更多 +
- [航空器材料检测]航空航天行业产品检测2019年10月09日 10:22
- 对使用于航空产品的金属材料、零部件、备品备件等进行质量检测,协助企业从源头把关航空安全。
- 阅读(677)
- [检测百科]分享:腐蚀对叶片毛坯荧光渗透检测的影响2025年04月02日 15:21
- 目前航空发动机导向叶片表面缺陷最常见的检测方法为荧光渗透检测。一般在毛坯铸造阶段、机械加工阶段及使用后均需进行荧光渗透检测,以保证叶片表面质量符合设计图纸要求[4]。如果零件缺陷未暴露至表面或缺陷开口被堵塞都可能造成渗透剂无法渗入,导致缺陷无法检出[5]。
- 阅读(2)
- [检测百科]分享:17-4PH不锈钢轮轴的多通道涡流检测2025年04月01日 09:24
- 沉淀硬化不锈钢按钢内金相组织形态可分为沉淀硬化半奥氏体不锈钢、沉淀硬化奥氏体不锈钢、沉淀硬化马氏体不锈钢。其中,合金17-4PH是在钢中加入铜、铌等元素经沉淀硬化而获得的马氏体不锈钢,该类材料具有耐腐蚀性强、强度高、塑性及韧性优良等特点,因此航运交通、航空航天工程、核工业等领域常将其作为关键零部件的材料[1-2]。
- 阅读(3)
- [检测百科]分享:热处理对Mg-3Sn-2Al-1Zn-5Li合金耐蚀性能的影响2025年03月21日 10:10
- 镁合金是最轻的结构材料之一,其密度低(仅为1/4铁密度)、比强度高,在航空航天、计算机、交通工具、通讯等领域具有广阔的应用前景[1]。然而,镁的标准电极电位极低(仅为-2.37 V),在海水中的腐蚀电位为-1.6~-1.5 V[2],容易产生侵蚀。
- 阅读(2)
- [检测百科]分享:ZL101铸铝合金在不同振幅下的超声空蚀行为2025年03月18日 14:21
- 在航空发动机铸铝燃油泵工作时,系统中不同部位间的压强变化大,易发生空蚀损伤,影响安全稳定运行。随着对航空发动机功率及转速的要求越来越高,对铸铝燃油泵材料展开空蚀相关研究具有重要的实际意义[5-7]。ZL101铸铝合金容易熔炼和铸造,气密性好,适合铸造薄壁、大面积和形状复杂的各种零件,常用于航空发动机燃油泵壳体的制造。
- 阅读(3)
- [检测百科]分享:舰载航空发动机用GH2150A压气机叶片的耐蚀性2025年03月12日 13:37
- 在现役海军飞机发动机维修检查时发现压气机叶片存在明显的腐蚀现象,叶片级数越高,表面红锈越明显。压气机叶片不断遭受海洋大气的腐蚀影响,其叶形、表面粗糙度以及叶顶间隙会发生变化,使得压气机各项参数偏离设计值,导致流量减小,效率下降,性能衰退[6-7]。为了验证GH2150A叶片在海洋大气环境中的耐蚀性,以及化学钝化对GH2150A叶片的防护作用,开展了192 h酸性盐雾试验、680 h酸性大气试验以及100 h高温(600 ℃)涂盐热腐蚀试验,以期为该型号叶片在海洋环境中的服役提供理论支撑。
- 阅读(3)
- [检测百科]分享:化学铣切参数对钛合金TA15原子力显微形貌的影响2025年02月27日 10:20
- 钛合金作为典型的高强度合金材料,具有耐蚀性良好、密度小、减震性能好以及比强度高等优点,在航空航天等方面得到了广泛的应用。但是,钛合金加工难度较大,表面粗糙度难以控制,而表面粗糙度是表面完整性最重要的评价指标之一,其对构件的疲劳性能、应力腐蚀性能等具有重要作用[1-16]。
- 阅读(2)
- [检测百科]分享:铝硅合金在海洋环境中的腐蚀行为2025年02月26日 10:50
- 铝的资源相对丰富,具有密度较小,导热、导电性能良好,强度较高,耐蚀性和加工性能良好等优点,在航空航天、船舶、机械、仪器等行业具有广泛应用,是结构轻量化设计中的主要选材之一。
- 阅读(2)
- [国检动态]关于召开2025年失效分析学术大会的通知 (第二轮)2025年02月24日 11:05
- 紧固件、轴承、齿轮等工业基础零部件,作为机械设备中的核心组件广泛应用于核电、汽车、航空航天、轨道交通等行业和领域。失效分析,作为一种专业性强、覆盖面广的分析手段,对于解决基础零部件的质量问题和提高装备的可靠性具有重要意义。为了深入推动工业基础零部件领域的技术交流与合作,进一步提升紧固件、轴承、齿轮等量大面广关键零部件的产品质量与可靠性,浙江省机械工程学会失效分析分会计划于2025 年3 月27 日~28 日在浙江嘉兴召开2025年失效分析学术大会。 会议将特邀失效分析、核电、
- 阅读(23)
- [检测百科]分享:钇添加量对低硅铸造铝合金组织与拉伸性能的影响2025年02月14日 11:23
- 铸造铝硅合金具有密度小、导热系数大、耐腐蚀性好、铸造性能好、流动性好、收缩率小、加工成型性好等优点,广泛应用于汽车、航空航天、建筑等领域[1-3],常用于制造中低强度的复杂铸件,如高铁动车组的枕梁、涡轮泵壳以及汽车转向节铸件等[4]。铸造铝硅合金根据硅含量可以分为亚共晶、共晶以及过共晶铸造铝硅合金。
- 阅读(4)
- [检测百科]分享:钇含量对镍基高温合金在宽温域条件下摩擦学性能的影响2025年02月13日 10:17
- 镍基高温合金在650~1 000 ℃高温下具有良好的力学性能和耐腐蚀性能等,广泛应用于航空航天、石油化工、冶金、船舶等领域[1-4]。随着科技快速发展,各零部件的工作环境愈加恶劣,对材料性能的要求也愈加苛刻[5-6],如应用于海洋钻井平台、高温炉具、高温高负荷结构件等时不仅要具有良好的抗高温蠕变、氧化性能,还要在宽温域条件下具有良好的摩擦学性能。
- 阅读(4)
- [检测百科]分享:半固态注射成镁合金复合材料的低周疲劳性能2025年02月12日 12:51
- 镁合金作为实际使用密度最小的结构金属之一,广泛应用于汽车和航空航天领域,以降低能源成本和提高性能[1],但其强度、刚度、塑性、耐磨性尤其是耐高温性能的不足,使得其应用范围受限[2]。研究人员通过向镁合金基体中加入与其物理化学相容性好、载荷承载能力强的增强体(如SiC[3]、TiC[4]、B4C[5]等颗粒),制备的镁基复合材料不仅继承了镁合金密度小、阻尼大、减震降噪性能优越、电磁屏蔽性能优异等优势,还具有更高的比强度和比刚度,良好的尺寸稳定性、耐高温性以及出色的抗冲击能力[6-7]。这些特性使得镁基复合材料在航空航天、汽车和电子等领域更具应用潜力。
- 阅读(6)
- [检测百科]分享:石墨炉原子吸收光谱法测定镍基高温合金中铅、铋、硒元素的含量2025年02月11日 13:33
- 镍基高温合金主要由铬、钨、钼、钴、铝、钛、硼、锆等多种金属及多元合金在高频感应炉中熔融冶炼而成,因其优异的抗蠕变、抗疲劳以及抗氧化腐蚀等性能,广泛用于航空发动机叶片、核反应堆和能源转换等设备上[1]。
- 阅读(4)
- [检测百科]分享:IN718高温合金的新型热控凝固工艺优化2025年02月05日 14:24
- 以导向器和机匣等为代表的高温合金复杂薄壁铸件是航空发动机的核心部件,目前普遍采用精密铸造技术制备。为满足高性能、高可靠性和结构轻量化的需求,这类铸件正向着结构复杂化、产品轻量化和尺寸精确化方向发展,同时其显微组织也要求细小、均匀、无缺陷[1-2]。但是,传统精密铸造工艺在良好充型和组织均匀细化方面存在尖锐的矛盾,制备的复杂薄壁铸件容易出现欠铸、疏松、晶粒粗大且不均匀和偏析等冶金缺陷,不能很好地满足使用要求,从而成为制约高性能航空发动机生产的突出问题[1]。
- 阅读(2)
- [检测百科]分享:基于机器学习的GH4169合金本构参数反演方法2025年01月23日 10:21
- 惯性摩擦焊技术被视为核心粉末冶金部件的关键焊接方法,对推进航空发动机性能的提升和轻量化水平的提高具有重要意义[1]。惯性摩擦焊技术通过两工件之间的旋转摩擦产生热量,使材料的焊接位置处于塑性状态,并在顶锻力的作用下使材料发生塑性变形与扩散,从而实现焊接[2-3]。
- 阅读(5)
- [检测百科]分享:2017铝合金/2A12铝合金搅拌摩擦焊接头的组织和性能2025年01月23日 09:57
- 在我国航空航天、汽车等领域节能减排的要求下,越来越多的铝合金被广泛使用在飞机的骨架零件、蒙皮以及各种车辆中。由于外部环境和承受载荷的差异,不同部件对铝合金材料的性能要求各不相同。异种铝合金焊接能够最大限度地利用各种铝合金的优点,受到了人们的关注[1-3]。但是传统的焊接方式,如钎焊、氩弧焊等会使接头中产生气孔、裂纹等缺陷,导致接头的性能降低[4-5]。
- 阅读(2)
- [检测百科]分享:不同含量原位自生TiB2颗粒增强ZL114A铝基复合材料的组织与性能2025年01月22日 13:10
- Al-Si系合金具有良好的铸造工艺性能和耐腐蚀性能,广泛应用于航空、航天、汽车等领域,尤其适用于制备复杂的大型薄壁结构铸件[1]。对于大型一体化薄壁结构铸件,形状的复杂性和壁厚的不均匀性使得铸件在热处理时更容易产生变形,因此铸件强韧性是极其重要的一个指标。现有的铸态Al-Si系合金的强韧性指标并不能完全满足大型薄壁结构铸件的性能要求[2-4]。
- 阅读(4)
- [检测百科]分享:激光选区熔化Al-Mg-Sc-Zr合金薄壁件显微组织与拉伸性能的均匀性2025年01月20日 16:15
- 增材制造由于具有快速制造、无模成形、材料利用率高等优点成为目前航空航天领域结构轻量化及复杂零部件制备的关键技术[1]。其中,激光选区熔化(SLM)技术是重要的金属材料增材制造技术,该技术以激光作为能量源,按照三维计算机辅助设计(CAD)切片模型中规划的路径,对金属粉末进行逐层扫描,使粉末熔化、凝固从而达到冶金结合的效果,最终获得设计的金属零件[2]。
- 阅读(4)