- [检测百科]分享:热界面材料导热硅脂的研究进展2025年09月10日 14:47
- 随着电子器件不断微型化与集成化,其功率密度急剧提高,热量累积加剧。热界面材料能够保证封装与散热装置之间良好的热传导,使热量快速耗散,从而避免电子器件因过热而性能下降。
- 阅读(0)
- [检测百科]分享:堆焊电流对药芯焊丝堆焊熔覆层组织及性能的影响2025年04月10日 15:11
- 热作模具长时间工作于高温高压环境,常会因磨损、开裂和腐蚀等原因而发生失效[1]。通过表面涂覆、表面改性和表面处理等表面工程技术在模具表面形成一层性能优异的涂层或改性层,是一种经济有效的提升模具性能的方法[2]。热作模具表面的涂层或改性层应具有抗高温磨损的能力。目前,国内外主要有铁基、钴基和镍基3大类高温耐磨材料,其中铁基材料的耐磨性能良好、价格低廉、适用范围较广。
- 阅读(7)
- [检测百科]分享:Ni-Al金属间化合物防护层的制备工艺设计2025年02月18日 12:54
- 近年来,国内外对于材料表面涂层的研究逐渐增多。利用表面改性技术在金属表面制备涂层显著提高了金属的耐蚀性[1]。Ni-Al合金由于其优异的性能,如低密度、高熔点、高耐酸碱腐蚀等[2-5],受到人们的广泛关注。Ni-Al金属间化合物中NiAl具有有序立方B型结构,晶粒中Ni原子和Al原子分别占据亚晶格的顶点,有望成为高温结构材料的替代材料[6-8]。Ni3Al具有Cu3Au型面心立方有序结构,在接近熔点时仍能保持高度长程有序等优点[9-10]。由于Ni-Al金属间化合物性能优越,将其作为防高温氧化涂层极具意义。
- 阅读(9)
- [检测百科]分享:硅、铬掺杂对TiAlN基涂层微观结构及摩擦学性能的影响2024年12月12日 11:07
- 由摩擦磨损带来的能源消耗和材料破坏造成了巨大的经济损失,因此寻求耐磨减摩材料以及探索材料防护技术成为了研究焦点。渗氮、渗碳、喷丸、制备涂层、电镀等表面改性技术可以通过改善工件的表面状态来提升其摩擦学性能[1-2]。采用物理气相沉积技术[3-5]制备的TiN涂层能够提升刀具以及零部件表面的硬度和耐磨性,但是该涂层在650 ℃时会发生氧化形成疏松的TiO2而失效[6-7]。
- 阅读(9)
- [检测百科]分享:氢氧化铝粉体表面改性实验研究2024年07月15日 13:04
- 阻燃剂可以使塑料、橡胶等可燃性的物质难以燃烧,同时它具有自息性或消烟性等特点,是重要的化工精密产品和有机聚合高分子材料的主要助剂之一[1]。据文献报道,阻燃剂主要分为2大类,一类是有机阻燃剂,传统的有机阻燃剂主要是以卤素等阻燃剂为主。由于卤素类阻燃剂对可燃物的点火具有更好的抗燃烧效果,因此在有机阻燃剂中是最好的,且卤系阻燃剂与有机合成高分子材料或高分子复合材料的相容性也是较好的[2]。第二类是无机阻燃剂。虽然卤素类阻燃剂在阻燃剂领域的阻燃效果在世界范围内得到认可,但当使用该类阻燃剂时,随着可燃物一起燃烧的同时也会释放出卤化氢等有害的气体,虽然这种物质能阻止可燃物进一步燃烧,但是它的毒性和腐蚀性,严重污染了环境[3]。
- 阅读(16)
- [检测百科]等离子体源渗氮奥氏体不锈钢的摩擦磨损行为2021年12月14日 10:16
- 李广宇,曾心睿,王 楠,谷雪忠,方子奇 (营口理工学院机械与动力工程系,营口 115014) 摘 要:采用等离子体源渗氮技术对 AISI316奥氏体不锈钢进行450 ℃×6h改性处理,通过干摩擦磨损试验对比研究了该不锈钢基体和表面改性层在不同载荷下与Si3N4 陶瓷球摩擦副对磨时的摩擦磨损行为,观察了磨损形貌,并对其磨损机制进行了分析.结果表明:等离子体源渗氮后,试验钢表面形成了厚度约17μm 的单一面心立方结构的高氮 γN 相改性层,改性层中氮元素的原子分数为1
- 阅读(22)
- [检测百科]分享:等离子体源渗氮奥氏体不锈钢的摩擦磨损行为2021年08月19日 15:58
- 采用等离子体源渗氮技术对 AISI316奥氏体不锈钢进行450 ℃×6h改性处理,通过干摩擦磨损试验对比研究了该不锈钢基体和表面改性层在不同载荷下与Si3N4 陶瓷球摩擦副对磨时的摩擦磨损行为,观察了磨损形貌,并对其磨损机制进行了分析.
- 阅读(11)
- [检测百科]分享:表面改性纳米SrTiO3 粉体的制备2021年06月17日 16:36
- 以硝酸锶、钛酸四丁酯和氢氧化钾为原料,采用水热法制备了 SPAN80表面活性剂改性纳米SrTiO3 粉体,利用 X射线衍射仪、透射电镜、能谱仪、激光粒度仪等分析了粉体的物相组成、形貌和粒径.结果表明:经10%(体积分数)SPAN80表面活性剂改性后,SrTiO3 粉体颗粒呈球形,平均粒径小于未改性粉体的,且粒度分布较窄;表面活性剂对粉体的物相组成无影响;当SPAN80表面活性剂的体积分数大于10%时,SrTiO3 粉体的粒径又呈增大的变化趋势.
- 阅读(19)