- [检测百科]分享:制氢吸附塔疲劳开裂的在线检测2025年04月02日 15:14
- 某炼油厂制氢装置设备员在巡检时发现某吸附塔开裂泄漏,裂纹位于母材位置,距环焊缝160 mm,该裂纹长285 mm,沿塔壁纵向扩展,外壁裂纹形貌如图1所示。经查设备资料,该吸附塔材料为16 MnR,规格为?2 800 mm(直径)×13 356 mm(高度)×30 mm(壁厚),操作温度为常温,塔内介质主要为氢气和少量甲烷、一氧化碳、二氧化碳。
- 阅读(2)
- [检测百科]分享:考虑弯矩影响的含腐蚀缺陷X80管道失效内压的计算方法2025年03月13日 14:56
- 由于管道周围土壤的复杂性和管输石油、天然气等介质的腐蚀性,管道极易形成腐蚀等体积型缺陷,腐蚀缺陷将导致管道壁厚减薄、强度降低、应力集中,从而降低管道的极限承载能力,削弱管道抵抗疲劳载荷的能力,严重时甚至会发生局部穿孔导致的泄漏事故[1],造成经济损失和人员伤亡。长输油气管道路由复杂多变,往往会途经泥石流、洪水和滑坡等地质灾害易发的地区,地层土壤的移动会使管道产生弯曲变形,严重威胁管道的正常运行。准确计算弯矩影响下含腐蚀缺陷管道的极限承载力,对确保管道安全运行具有重要的工程意义。
- 阅读(2)
- [检测百科]分享:城镇燃气埋地钢质管道防腐蚀现状2025年02月27日 10:39
- 在造成燃气管道安全事故的众多因素中,腐蚀是引起埋地钢质燃气管道壁厚减薄和失效的主要原因之一。以北京燃气为例,2014-2017年间,发生了1 075起腐蚀漏气事故。其中,低压管道约745起,占比75.4%,中压管道次之(196起),次高压及高压管道分别为18起和20起,占比均约为2%。低压管道防腐蚀层质量普遍较差,同时未施加有效的阴极保护,成为了腐蚀漏气的高发区,部分中压管道施加了阴极保护,而次高压及高压管道由于有良好的防腐蚀层和阴极保护,腐蚀漏气事件相对较少[7]。
- 阅读(4)
- [检测百科]分享:油气管道不等壁厚内锥孔环焊缝的相控阵超声检测2025年02月06日 14:07
- 在建设长距离油气输送管道时,不同的地区等级或穿跨越地段会采用不同的强度设计系数,且不同管段选用不同壁厚规格的钢管,考虑到热煨弯管制造过程中的壁厚减薄,热煨弯管的设计壁厚一般要大于直管段壁厚。由于管道沿线钢管和管件壁厚的变化,在管道现场焊接过程中,不等壁厚钢管的焊接较为常见,在复杂山区尤为突出[1]。
- 阅读(8)
- [检测百科]分享:不同含量原位自生TiB2颗粒增强ZL114A铝基复合材料的组织与性能2025年01月22日 13:10
- Al-Si系合金具有良好的铸造工艺性能和耐腐蚀性能,广泛应用于航空、航天、汽车等领域,尤其适用于制备复杂的大型薄壁结构铸件[1]。对于大型一体化薄壁结构铸件,形状的复杂性和壁厚的不均匀性使得铸件在热处理时更容易产生变形,因此铸件强韧性是极其重要的一个指标。现有的铸态Al-Si系合金的强韧性指标并不能完全满足大型薄壁结构铸件的性能要求[2-4]。
- 阅读(4)
- [检测百科]分享:过热器管道爆裂原因2024年11月14日 14:20
- 过热器是锅炉中的重要部件,其主要作用是将饱和蒸汽加热成具有一定温度的过热蒸汽,从而提升蒸汽作功能力,提高电厂的热循环效率[1–2]。某单位二次过热器蛇形管材料为12Cr2MoWVTiB钢,规格为32 mm×4.5 mm(外径×壁厚),管道安装于锅炉上,外部介质为锅炉烟气,内部介质为过热蒸汽,在使用2个月后,锅炉二次过热器发生爆管现象。
- 阅读(9)
- [检测百科]分享:某电厂锅炉水冷壁管壁厚异常减薄原因2024年11月13日 09:39
- 水冷壁管是锅炉的主要受热部分,用于吸收炉膛中高温燃烧产物的辐射热量,也是实现锅炉热量传递与交换的最核心部件[1-4]。由于锅炉运行工况复杂,水冷壁管长期处于高压水汽和高温烟气环境中,壁厚异常减薄给锅炉的安全运行造成重大安全隐患,因此分析其减薄原因,并采取必要的预防措施,对锅炉的安全运行至关重要[5-7]。
- 阅读(10)
- [检测百科]分享:铝合金气瓶泄漏原因2024年11月11日 12:39
- 铝合金气瓶发生泄漏的原因为:气瓶内壁接触了腐蚀性介质,使气瓶内壁产生了点腐蚀坑,在循环压力试验过程中,点腐蚀坑作为疲劳裂纹源,使气瓶在交变应力作用下发生疲劳扩展,裂纹不断扩展并穿透壁厚,最终造成气瓶泄漏。
- 阅读(14)
- [检测百科]分享:G18NiMoCr3-6铸钢焊接接头低温冲击性能不合格原因2024年10月21日 11:21
- G18NiMoCr3-6低合金高强度铸钢经调质处理后具有较高的强度、良好的塑性和韧性,可用于生产轨道交通中的关键零部件。但合金钢的砂型铸造易受铸件尺寸、壁厚、原材料、气候、操作方法等因素的制约,铸件经常出现缩松、砂眼、气孔、夹杂等铸造缺陷。对于铸件表面较大的缺陷,在热处理前可对其进行补焊。为了严格控制G18NiMoCr3-6钢缺陷的补焊质量,必须进行焊接工艺评定,以验证焊接及焊后热处理工艺的正确性[1]。
- 阅读(9)
- [检测百科]分享:使用工况条件下核用18Ni(300)钢拉杆的力学性能2024年10月09日 15:24
- 蒸汽发生器传热管是压水堆核电站一、二回路的压力边界,在高温、高压、振动和应力等复杂工况条件下,随着运行时间的延长,部分传热管发生腐蚀损伤,以及传热管壁厚减薄、破损或泄漏现象,影响核电站的安全运行。为了保证核电站的正常运行,通常对缺陷传热管两端进行封堵。
- 阅读(19)
- [检测百科]分享:SPHE压缩机壳体冲压制耳缺陷分析2024年04月09日 09:57
- 热轧酸洗板是以优质热轧薄板为原料,经酸洗机组去除氧化层,切边,精整后,表面质量和使用性能介于热轧板和冷轧板之间的中间产品,是部分热轧板和冷轧板理想的替代产品。江苏某家电企业采购SPHE酸洗板用于生产冰箱压缩机壳体,在生产时出现批量的制耳缺陷,表现为钢板各个方向变形能力不同,冲压出来的工件边缘不齐、壁厚不均[1]。经现场生产工艺的不断调整没有明显效果,于是立即停产并向钢厂提报质量异议。
- 阅读(28)
- [检测百科]分享:现场金相检验技术及误判案例分析2023年11月06日 09:55
- 通过分析现场金相检验误判案例,概况总结了可能导致现场金相检验误判的原因,并提 出了改进措施,最后归纳出防止现场金相检验误判必须考虑的因素.提出检验人员在开展现场金 相检验及显微组织判断时,应对所检材料表面状况、壁厚、环境、现场设备能力等因素加以综合考 虑,防止忽略这些因素造成的显微组织判断偏差及技术风险.
- 阅读(4)
- [检测百科]分享:核电厂疏水器壁厚减薄原因2023年09月15日 09:27
- 某核电厂高压加热器系统疏水器在服役过程中发生局部减薄,采用宏观观察、化学成分 分析、金相检验、扫描电镜分析及X射线衍射等方法对疏水器壁厚减薄原因进行了分析,并对疏水 器流道的流态进行了模拟计算。结果表明:高流速介质的冲刷减薄及流体加速腐蚀减薄是造成疏 水器减薄穿孔失效的直接原因;阀体内表面脱碳导致材料的硬度降低、抗冲刷能力和耐腐蚀性减 弱,从而加速了阀体的壁厚减薄。
- 阅读(5)
- [检测百科]分享:N80-1钢加厚油管加厚部位断裂原因2022年12月08日 09:31
- 在某油田下井作业时,一支 N80-1钢加厚油管在加厚部位突然断裂。通过几何尺寸测 量、宏观分析、力学性能试验、扫描电镜及能谱分析等方法,分析了该油管加厚部位断裂的原因。结 果表明:油管加厚部位断裂为低应力脆断,主要原因是管坯铸造缺陷改变了油管内部应力状态和应 力分布;加厚油管的拉伸性能和管体外径均不满足标准要求、加厚部位壁厚不均、管体轧疤缺陷和 环状凹面是该加厚油管断裂的次要原因;在主、次要原因的共同作用下,使得油管在远低于额定最 小破断拉力的重力作用下发生脆性断裂。
- 阅读(14)
- [检测百科]分享:国产690TT合金U形管弯管区性能测定2022年08月31日 13:29
- 摘 要:对国产蒸汽发生器690TT 合金 U 形管弯管区进行壁厚测量、金相检验、晶间腐蚀、应力腐蚀、残余应力测试等试验,并与直管区的性能进行对比。结果表明:国产蒸汽发生器690TT 合金U 形管弯管区外侧壁厚减薄最大为7.8%,弯管区的显微组织、晶粒大小及晶间腐蚀速率均与直管区相当。弯管后弯管区内侧表面残余应力为拉应力,外侧表面残余应力为压应力,消应力热处理后弯管区残余应力绝对值减小,不易发生应力腐蚀。采用弯管及消应力热处理可以使国产690TT 合金 U 形管弯管区的各项性能
- 阅读(13)
- [检测百科]分享:带保温层管道壁厚的数字射线检测2022年08月18日 10:23
- 采用数字射线边界法对带 保温层管道的壁厚进行检测,对检测误差进行了理论分析。结果表明,数字射线边界法检测精度较 高,可用于工程实际。
- 阅读(13)
- [检测百科]分享:应力控制和应变控制模式下304奥氏体不锈钢的应变强化2021年12月20日 10:22
- 奥氏体不锈钢凭借其优异的力学性能,尤其是良好的低温特性,使其得到了越来越广泛的应用.同时,奥氏体不锈钢屈服强度低,而抗拉强度高,具有较大的塑性裕量,可牺牲奥氏体不锈钢的部分塑性来提高其屈服强度,进而降低奥氏体不锈钢压力容器的设计壁厚,已成为节约制造成本及运输成本、提高经济效益的重要手段[1G3].这一过程通常被称为奥氏体不锈钢的应变强化.
- 阅读(55)
- [检测百科]分享:节流阀阀套断裂失效分析2021年11月08日 13:07
- 国外某气田单井的井口节流阀阀套在运行10d(天)左右后便发生了断裂失效.为了研究阀套的失效原因,对其宏观形貌、化学成分、显微组织、硬度和断口形貌等方面进行了分析.结果表明:阀套主要呈脆性断裂特征,表现形式为沿晶断裂,断裂与环向应力和轴向应力相关;裂纹从阀套外表面的点蚀坑底部萌生,沿壁厚方向扩展,阀套在受到较大的环向应力时发生应力腐蚀开裂.
- 阅读(13)